Search results for " Granger causality"

showing 10 items of 12 documents

Lateralization of directional brain-heart information transfer during visual emotional elicitation

2019

Previous studies have characterized the physiological interactions between central nervous system (brain) and peripheral cardiovascular system (heart) during affective elicitation in healthy subjects; however, questions related to the directionality of this functional interplay have been gaining less attention from the scientific community. Here, we explore brain-heart interactions during visual emotional elicitation in healthy subjects using measures of Granger causality (GC), a widely used descriptor of causal influences between two dynamical systems. The proposed approach inferences causality between instantaneous cardiovagal dynamics estimated from inhomogeneous point-process models of…

AdultInformation transferPhysiologyCentral nervous systemEmotions01 natural sciencesLateralization of brain function03 medical and health sciencesElectrocardiography0302 clinical medicineGranger causalityHeart RatePhysiology (medical)0103 physical sciencesmedicineinformation transferHumans010306 general physicsAffective computingaffective computingpoint processBrainElectroencephalographyHeartbrain-heart interactionAffective computing; Brain-heart interaction; Granger causality; Information transfer; Point processmedicine.anatomical_structureRespiratory Physiological PhenomenaGranger causalityFemalePsychologyNeuroscience030217 neurology & neurosurgeryPhotic Stimulation
researchProduct

Cardiovascular control and time domain granger causality: Insights from selective autonomic blockade

2013

We studied causal relations among heart period (HP), systolic arterial pressure (SAP) and respiration (R) according to the definition of Granger causality in the time domain. Autonomic pharmacological challenges were used to alter the complexity of cardiovascular control. Atropine (AT), propranolol and clonidine (CL) were administered to block muscarinic receptors, β-adrenergic receptors and centrally sympathetic outflow, respectively. We found that: (i) at baseline, HP and SAP interacted in a closed loop with a dominant causal direction from HP to SAP; (ii) pharmacological blockades did not alter the bidirectional closed-loop interactions between HP and SAP, but AT reduced the dominance of…

AdultMaleGeneral MathematicsGeneral Physics and AstronomyBlood PressurePropranololPharmacologyBaroreflexArterial pressure variability; Autonomic nervous system; Baroreflex; Cardiovascular control; Granger causality; Heart rate variability; Mathematics (all); Engineering (all); Physics and Astronomy (all)Models BiologicalPhysics and Astronomy (all)Engineering (all)Respiratory RateGranger causalityBiological ClocksHeart RateMuscarinic acetylcholine receptormedicineHumansHeart rate variabilityAutonomic nervous systemMathematics (all)Computer SimulationHeart rate variabilityFeedback PhysiologicalChemistryGeneral EngineeringMiddle AgedBaroreflexClonidineAtropineAutonomic nervous systemCardiovascular controlSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityFemaleArterial pressure variabilityAutonomic Nerve Blockmedicine.drug
researchProduct

Assessing Causality in normal and impaired short-term cardiovascular regulation via nonlinear prediction methods

2009

We investigated the ability of mutual nonlinear prediction methods to assess causal interactions in short-term cardiovascular variability during normal and impaired conditions. Directional interactions between heart period (RR interval of the ECG) and systolic arterial pressure (SAP) short-term variability series were quantified as the cross-predictability (CP) of one series given the other, and as the predictability improvement (PI) yielded by the inclusion of samples of one series into the prediction of the other series. Nonlinear prediction was performed through global approximation (GA), approximation with locally constant models (LA0) and approximation with locally linear models (LA1) …

Adultmedicine.medical_specialtySupine positionTime FactorsGeneral MathematicsRR intervalGlobal nonlinear predictionGeneral Physics and AstronomyNeurally-mediated syncopeBlood PressureK-nearest neighbours local nonlinear predictionCardiovascular SystemSyncopeCardiovascular Physiological PhenomenaPhysics and Astronomy (all)Engineering (all)Control theoryHeart RateNeurally mediated syncopeInternal medicinemedicinePressureHumansMathematics (all)Computer SimulationOut-of-sample predictionMathematicsModels StatisticalGeneral EngineeringLinear modelModels CardiovascularNonlinear granger causalityModels TheoreticalControl subjectsHeart rate and arterial pressure variabilityCausalityNonlinear predictionTerm (time)Case-Control StudiesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaCardiologyAlgorithms
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Predictability decomposition detects the impairment of brain-heart dynamical networks during sleep disorders and their recovery with treatment

2016

This work introduces a framework to study the network formed by the autonomic component of heart rate variability (cardiac process η ) and the amplitude of the different electroencephalographic waves (brain processes δ , θ , α , σ , β ) during sleep. The framework exploits multivariate linear models to decompose the predictability of any given target process into measures of self-, causal and interaction predictability reflecting respectively the information retained in the process and related to its physiological complexity, the information transferred from the other source processes, and the information modified during the transfer according to redundant or synergistic interaction betwee…

Autonomic nervous system; Brain-heart interactions; Delta sleep electroencephalogram; Granger causality; Heart rate variability; Synergy and redundancy; Mathematics (all); Engineering (all); Physics and Astronomy (all)General MathematicsGeneral Physics and AstronomyElectroencephalography01 natural sciencesSynergy and redundancy03 medical and health sciencesPhysics and Astronomy (all)0302 clinical medicineEngineering (all)0103 physical sciencesMedicineHeart rate variabilityAutonomic nervous systemMathematics (all)Predictability010306 general physicsHeart rate variabilityCardiac processmedicine.diagnostic_testbusiness.industryGeneral EngineeringHealthy subjectsBrainArticlesAutonomic nervous systemDelta sleep electroencephalogramSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityBrain-heart interactionSleep (system call)businessNeuroscience030217 neurology & neurosurgery
researchProduct

Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls.

2022

We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing or…

Endocrine and Autonomic SystemsTime series analysisBlood PressureHeartBaroreflexCardiovascular SystemSyncopeCerebral autoregulationCellular and Molecular NeuroscienceHeart RateAutoregressive modelsCardiovascular controlCerebrovascular CirculationGranger causalitySettore ING-INF/06 - Bioingegneria Elettronica e InformaticaHumansNeurology (clinical)Spectral decompositionAutoregressive models; Cardiovascular control; Cerebral autoregulation; Granger causality; Spectral decomposition; Time series analysis;Autonomic neuroscience : basicclinical
researchProduct

Local Granger causality

2021

Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …

FOS: Computer and information sciencesInformation transferGaussianFOS: Physical sciencestechniques; information theory; granger causalityMachine Learning (stat.ML)Quantitative Biology - Quantitative Methods01 natural sciences010305 fluids & plasmasVector autoregressionsymbols.namesakegranger causalityGranger causalityStatistics - Machine Learning0103 physical sciencesApplied mathematicstime serie010306 general physicsQuantitative Methods (q-bio.QM)Mathematicsinformation theoryStochastic processDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputational Physics (physics.comp-ph)Discrete time and continuous timeAutoregressive modelFOS: Biological sciencesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticasymbolsTransfer entropytechniquesPhysics - Computational Physics
researchProduct

A framework for assessing frequency domain causality in physiological time series with instantaneous effects.

2013

We present an approach for the quantification of directional relations in multiple time series exhibiting significant zero-lag interactions. To overcome the limitations of the traditional multivariate autoregressive (MVAR) modelling of multiple series, we introduce an extended MVAR (eMVAR) framework allowing either exclusive consideration of time-lagged effects according to the classic notion of Granger causality, or consideration of combined instantaneous and lagged effects according to an extended causality definition. The spectral representation of the eMVAR model is exploited to derive novel frequency domain causality measures that generalize to the case of instantaneous effects the kno…

General MathematicsGeneral Physics and AstronomyModels BiologicalCausality (physics)Physics and Astronomy (all)Engineering (all)Granger causalityEconometricsMathematics (all)Coherence (signal processing)AnimalsHumansComputer SimulationDirected coherenceMathematicsMultivariate autoregressive modelModels StatisticalSeries (mathematics)Partial directed coherenceGeneral EngineeringSystem identificationAC powerAutoregressive modelFrequency domainSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityDirected coherence; Granger causality; Multivariate autoregressive models; Partial directed coherence; Mathematics (all); Engineering (all); Physics and Astronomy (all)AlgorithmsPhilosophical transactions. Series A, Mathematical, physical, and engineering sciences
researchProduct

Information Decomposition in Multivariate Systems: Definitions, Implementation and Application to Cardiovascular Networks

2016

The continuously growing framework of information dynamics encompasses a set of tools, rooted in information theory and statistical physics, which allow to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of complex networks. Building on the most recent developments in this field, this work designs a complete approach to dissect the information carried by the target of a network of multiple interacting systems into the new information produced by the system, the information stored in the system, and the information transferred to it from the other systems; information storage and transfer are then further decomposed into amou…

Information transferDynamical systems theoryComputer scienceGeneral Physics and Astronomylcsh:AstrophysicsInformation theorycomputer.software_genreMachine learning01 natural sciencesEntropy - Cardiorespiratory interactions - Dynamical systems -cardiovascular interactions03 medical and health sciencessymbols.namesake0302 clinical medicinelcsh:QB460-4660103 physical sciencesinformation transferEntropy (information theory)lcsh:Science010306 general physicsGaussian processautoregressive processesmultivariate time series analysisbusiness.industryautonomic nervous systemredundancy and synergycardiorespiratory interactionsdynamical systemsComplex networkNetwork dynamicslcsh:QC1-999autonomic nervous system; autoregressive processes; cardiorespiratory interactions; cardiovascular interactions; Granger causality; dynamical systems; information dynamics; information transfer; redundancy and synergy; multivariate time series analysisAutoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalitysymbolslcsh:QArtificial intelligenceData mininginformation dynamicsbusinesscomputerlcsh:Physics030217 neurology & neurosurgeryEntropy; Volume 19; Issue 1; Pages: 5
researchProduct

Information Dynamics Analysis: A new approach based on Sparse Identification of Linear Parametric Models*

2020

The framework of information dynamics allows to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of a complex network. The information transfer from one process to another can be quantified through Transfer Entropy, and under the assumption of joint Gaussian variables it is strictly related to the concept of Granger Causality (GC). According to the most recent developments in the field, the computation of GC entails representing the processes through a Vector Autoregressive (VAR) model and a state space (SS) model typically identified by means of the Ordinary Least Squares (OLS). In this work, we propose a new identification …

Multivariate statisticsComputer scienceEntropyGaussian0206 medical engineeringNormal Distribution02 engineering and technology01 natural sciencesLASSO regression010305 fluids & plasmassymbols.namesakeinformation TransferState Space modelsGranger causalityLasso (statistics)0103 physical sciencesStatistics::MethodologyState spaceLeast-Squares AnalysisShrinkageSparse matrixElectroencephalography020601 biomedical engineeringinformation Transfer; LASSO regression; State Space models; Granger causalityAutoregressive modelstate space modelParametric modelOrdinary least squaresLinear ModelssymbolsGranger causalityTransfer entropyAlgorithmInformation dyancamic analysi
researchProduct