Search results for " Granger causality"
showing 10 items of 12 documents
Lateralization of directional brain-heart information transfer during visual emotional elicitation
2019
Previous studies have characterized the physiological interactions between central nervous system (brain) and peripheral cardiovascular system (heart) during affective elicitation in healthy subjects; however, questions related to the directionality of this functional interplay have been gaining less attention from the scientific community. Here, we explore brain-heart interactions during visual emotional elicitation in healthy subjects using measures of Granger causality (GC), a widely used descriptor of causal influences between two dynamical systems. The proposed approach inferences causality between instantaneous cardiovagal dynamics estimated from inhomogeneous point-process models of…
Cardiovascular control and time domain granger causality: Insights from selective autonomic blockade
2013
We studied causal relations among heart period (HP), systolic arterial pressure (SAP) and respiration (R) according to the definition of Granger causality in the time domain. Autonomic pharmacological challenges were used to alter the complexity of cardiovascular control. Atropine (AT), propranolol and clonidine (CL) were administered to block muscarinic receptors, β-adrenergic receptors and centrally sympathetic outflow, respectively. We found that: (i) at baseline, HP and SAP interacted in a closed loop with a dominant causal direction from HP to SAP; (ii) pharmacological blockades did not alter the bidirectional closed-loop interactions between HP and SAP, but AT reduced the dominance of…
Assessing Causality in normal and impaired short-term cardiovascular regulation via nonlinear prediction methods
2009
We investigated the ability of mutual nonlinear prediction methods to assess causal interactions in short-term cardiovascular variability during normal and impaired conditions. Directional interactions between heart period (RR interval of the ECG) and systolic arterial pressure (SAP) short-term variability series were quantified as the cross-predictability (CP) of one series given the other, and as the predictability improvement (PI) yielded by the inclusion of samples of one series into the prediction of the other series. Nonlinear prediction was performed through global approximation (GA), approximation with locally constant models (LA0) and approximation with locally linear models (LA1) …
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
2021
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…
Predictability decomposition detects the impairment of brain-heart dynamical networks during sleep disorders and their recovery with treatment
2016
This work introduces a framework to study the network formed by the autonomic component of heart rate variability (cardiac process η ) and the amplitude of the different electroencephalographic waves (brain processes δ , θ , α , σ , β ) during sleep. The framework exploits multivariate linear models to decompose the predictability of any given target process into measures of self-, causal and interaction predictability reflecting respectively the information retained in the process and related to its physiological complexity, the information transferred from the other source processes, and the information modified during the transfer according to redundant or synergistic interaction betwee…
Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls.
2022
We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing or…
Local Granger causality
2021
Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …
A framework for assessing frequency domain causality in physiological time series with instantaneous effects.
2013
We present an approach for the quantification of directional relations in multiple time series exhibiting significant zero-lag interactions. To overcome the limitations of the traditional multivariate autoregressive (MVAR) modelling of multiple series, we introduce an extended MVAR (eMVAR) framework allowing either exclusive consideration of time-lagged effects according to the classic notion of Granger causality, or consideration of combined instantaneous and lagged effects according to an extended causality definition. The spectral representation of the eMVAR model is exploited to derive novel frequency domain causality measures that generalize to the case of instantaneous effects the kno…
Information Decomposition in Multivariate Systems: Definitions, Implementation and Application to Cardiovascular Networks
2016
The continuously growing framework of information dynamics encompasses a set of tools, rooted in information theory and statistical physics, which allow to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of complex networks. Building on the most recent developments in this field, this work designs a complete approach to dissect the information carried by the target of a network of multiple interacting systems into the new information produced by the system, the information stored in the system, and the information transferred to it from the other systems; information storage and transfer are then further decomposed into amou…
Information Dynamics Analysis: A new approach based on Sparse Identification of Linear Parametric Models*
2020
The framework of information dynamics allows to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of a complex network. The information transfer from one process to another can be quantified through Transfer Entropy, and under the assumption of joint Gaussian variables it is strictly related to the concept of Granger Causality (GC). According to the most recent developments in the field, the computation of GC entails representing the processes through a Vector Autoregressive (VAR) model and a state space (SS) model typically identified by means of the Ordinary Least Squares (OLS). In this work, we propose a new identification …